
NASA ROSES 2020 Proposal - Reinforcing the
Foundations of Scientific Python

Dharhas Pothina, Tyler Reddy, Andreas Müller,
Matt Haberland, Jeff Reback, Thomas Fan

January 2021

Contents

1 Scientific/Technical/Management (S/T/M) 1

1.1 Objectives . 2

1.2 Impact . 3

1.3 Relevance to the SMD mission . 3

1.4 Technical approach and methodology . 5

1.5 Sources of uncertainty & mitigation . 8

1.6 Team composition and responsibilities . 9

1.7 Work plan . 10

2 Data Management Plan (DMP) 17

3 Biographical Sketches 18

4 Current and Pending Support 23

5 Statements of Commitment 23

6 Budget Justification 26

6.1 Project and Community Leads . 26

6.2 Engineering Team . 27

6.3 Other Direct Costs . 27

7 Facilities and Equipment 28

1 Scientific/Technical/Management (S/T/M)

Large parts of the scientific community use and rely on the scientific Python ecosystem. Ar-
ray and dataframe data structures, provided by NumPy and pandas, and general scientific
and machine learning algorithms, provided by SciPy and scikit-learn, lie at the heart of this
ecosystem.

NumPy, pandas, SciPy and scikit-learn are mature community-driven open source projects.
Together they form the foundation of many downstream technique specific, domain specific
and application specific scientific software projects (See Fig. 1).

Although these are distinct projects with their own communities and governance, they are
mutually dependent. The projects attempt to partner and work together to maintain a robust
base upon which other projects can build. By submitting a joint proposal, the leadership of
these projects aims to improve this integration and solidify this foundation.

Figure 1: The scientific Python ecosystem

1

1.1 Objectives

Although these 4 projects are mature open source projects with massive userbases maintain-
ing and improving them remains a challenge. Much of the work on these projects is through
volunteer efforts. Through the work proposed, we will address key challenges in the main-
tenance of these four projects, as well as implement technical improvements with a focus on
computational performance of and tighter integration between them.

From a maintenance perspective, there are two primary objectives: reducing the burden on
project maintainers and encouraging participation in the community by new and existing vol-
unteers.

Maintaining continuous integration (CI) and extending it to, e.g. new Python versions and more
hardware platforms, is one of the most time-consuming activities for each project. We intend
to have an infrastructure engineer work on this, sharing expertise between projects. NumPy,
pandas, SciPy and Scikit-learn all make regular releases. Providing high-quality packages for
Linux, Windows and macOS - and more recently also ARM64 and PowerPC - is critical for end
users. Automating this process and integration testing between the different projects will save
maintainers a lot of time, prevent regressions, and allow more frequent releases to be made
easily.

The volume of both open issues and proposed contributions for each project is large - between
1300 (SciPy) and 3400 (pandas) issues, and between 180 (pandas) and 740 (scikit-learn) pull
requests. The bulk of that work is volunteer effort. We will perform targeted issue triaging and
code review to be able to prioritize the most important bug fixes and contributions, and get
them integrated into the projects.

Computational speed improvements, lower memory usage and the ability to parallelize algo-
rithms are beneficial to most use cases, and were at or near the top of desired enhancements
in two recent end user surveys. Therefore performance will be a main theme of the technical
work we propose. Our key objectives are:

• Better cross-project integration, in particular via data-type compatibility (e.g. reimple-
ment pandas dtypes on top of NumPy’s new dtype extension mechanism) and zero-copy
protocols (e.g., enable scikit-learn to consume pandas dataframes in more situations).

• Adopt and implement a uniform API per project for parallel execution. This will build on
the n_jobs and workers patterns in scikit-learn and SciPy, respectively.

• Extend the use of accelerator technologies. Pandas recently started using Numba as an
optional dependency which we will extend to a larger part of the API; all projects have
scope for significant performance improvements via heavier use of Cython.

More significant performance gains, and the ability to scale up to larger data sets, will be
unlocked by enabling the use of GPU and distributed arrays in SciPy and scikit-learn. Initial
experimental work has proven that this is feasible, via use of NumPy array protocols plus
CuPy for GPU support and Dask for distributed support. We will solve the remaining technical
hurdles to ensure that users are able to smoothly use CuPy and Dask throughout at least one
SciPy submodule and one scikit-learn submodule.

2

1.2 Impact

Integration of CI and testing infrastructure between projects will reduce the maintenance bur-
den on the core contributors and allow them to explore higher value algorithmic and perfor-
mance aspects of the projects. Adapting to new hardware will become more straightforward.

Issues and contributions that are ignored have a tendency to drive potential volunteers away
from the community. Regular triaging of issues and contributions will make the projects more
welcoming to new contributors.

Stronger integration between the projects and the proposed performance improvements will
allow these projects to be utilized for the massive datasets now being generated by the SMD
communities.

The proposed work will increase both the health and the capabilities of these four projects,
which is not only beneficial to the tens of millions of users they have, but also to the wider
Python ecosystem - including space science specific libraries like AstroPy and SunPy - and
the NASA missions that rely on scientific computing with Python.

1.3 Relevance to the SMD mission

Establishing the overall prevalence of open source software to the SMD mission is hard to
quantify due to the software being freely distributed and not systematically cited. Examples of
NumPy, SciPy, pandas and scikit-learn usage can be found in missions and projects across all
four SMD divisions.

1.3.1 Selected Downstream Libraries

One way to look at the relevance to the SMD mission is to look at downstream libraries and
communities that are based on the projects that form this proposal. Below is a small selection
of high profile libraries that are important to the SMD.

• Matplotlib - Matplotlib is a comprehensive library for creating static, animated, and inter-
active visualizations in Python.

• AstroPy - The Astropy Project is a community effort to develop a common core package
for Astronomy in Python and foster an ecosystem of interoperable astronomy packages.

• SunPy - The community-developed, free and open-source solar data analysis environ-
ment for Python.

• Pangeo - A community platform for Big Data geoscience.

Matplotlib is used by all 4 SMD communities, AstroPy is focussed Astrophysics, Sunpy on
Heliophysics and Pangeo covers Earth Science and Planetary Science.

3

1.3.2 Usage in NASA Training Materials

An examination of publically available NASA training materials shows that NumPy, SciPy and
pandas are key libraries that NASA scientists are encouraged to understand and use [1, 2] and
that scikit-learn is considered an important important tool in the Machine Learning space [3]

1.3.3 Alignment with NASA Vision

NumPy and scikit-learn are mentioned explicitly in the 2018 National Academy of Sciences
white paper titled "Open Source Software Policy Options for NASA Earth and Space Sci-
ences" [4]. All four packages NumPy, SciPy, pandas, and scikit-learn packages are cited in a
call to support the Python numerical core in a white paper co-authored by the Space Telescope
Science Institute (STSI) in the 2020 Decadal Survey on Astronomy and Astrophysics [5].

Additionally, these 4 projects align with the following priorities and strategies outlined in the
NASA 2020-2024 scientific vision [6].

• Priority 2 - Innovation
– Strategy 2.2: Foster a culture that encourages collaboration in pursuit of common

goals. This proposal enhances the collaboration between 4 mature open source
communities. Together these communities work toward the goal of improving the
scientific Python ecosystem

• Priority 3 - Interconnectivity and Partnerships
– Strategy 3.4: Provide increasing opportunities for research institutions, including

academia and non-profits, to contribute to SMD’s mission. The proposal includes
partnerships between government and academic institutions and open source com-
munities.

– Strategy 3.5: Pursue public-private partnerships in support of shared interests with
industry. The proposal is lead by Quansight an industry leader in open source in
partnership with government, academic and open source entities.

• Priority 4 - Inspiration
– Strategy 4.1: Increase the diversity of thought and backgrounds represented across

the entire SMD portfolio through a more inclusive environment. We intend to place
a strong focus on bringing in people from under-represented minority groups into
the open source communities that surround the project.

1.3.4 Metrics on usage by NASA software and citations

The NASA Public GitHub organization hosts NASA code approved for open source. This
represents only a small fraction of all software developed at NASA, however it can still sketch
a picture of how widespread usage of NumPy, pandas, SciPy and scikit-learn is at NASA SMD.

The 330 repositories under the NASA Public GitHub organization contain in total 889 imports
of NumPy, 164 imports of SciPy, 55 imports of pandas and 20 imports of scikit-learn. Packages
making significant use of NumPy, pandas, SciPy and/or scikit-learn include:

4

• Astrobee Robot Software, performs vision-based localization, provides autonomous nav-
igation, docking and perching, manages various sensors and actuators, and supports
user interaction via screen-based displays, light signaling, and sound,

• DELTA (Deep Earth Learning, Tools, and Analysis), a framework for deep learning on
satellite imagery,

• Kamodo, a CCMC tool for access, interpolation, and visualization of space weather mod-
els and data in Python,

• Kepler-PyKE, A suite of Python/PyRAF tools to analyze Kepler data,
• RtRetrievalFramework, software to retrieve a set of atmospheric/surface/instrument pa-

rameters from a simultaneous fit to spectra from multiple absorption bands,
• SROMPy, Stochastic Reduced Order Models with Python,
• MXMCPy, an open source package that implements many existing multi-model Monte

Carlo methods (MLMC, MFMC, ACV) for estimating statistics from expensive, high-
fidelity models by leveraging faster, low-fidelity models for speedup,

• Lightkurve, a community-developed, open-source Python package which offers a beau-
tiful and user-friendly way to analyze astronomical flux time series data, in particular the
pixels and lightcurves obtained by NASA’s Kepler and TESS exoplanet missions,

Citations in the NASA Astrophysics Data system provide another metric indicating widespread
usage in fields relevant to NASA. NumPy [7, 8] has 1968 citations, SciPy [9] has 821 citations
(note, within one year of publication), scikit-learn [10] has 141 citations. The canonical pandas
citation [11] is a book which is not indexed in the NASA Astrophysics Data system; it has over
3200 citations in Google Scholar.

1.4 Technical approach and methodology

1.4.1 Maintenance activities

Each project has a large open issue and pull request count - from 1300 (SciPy) to 3400 (pan-
das) issues, and from 140 (pandas) to 750 (scikit-learn) pull requests. These represent the
backlog of maintenance work for each project. Triaging this backlog, i.e. labelling issues with
categories like "high priority", "good first issue", "needs review" and the topic or submodule
they concern, is high value for the project. It allows volunteer contributors to find good places
to contribute, and alerts maintainers to work needing their attention. Given that such triaging
is currently not performed on a regular basis, we will execute this task throughout the grant
period.

Continuous integration (CI), i.e. automatically testing each code change, is essential to main-
taining each project. CI relies on multiple free-for-open-source services like Travis CI and
GitHub Actions, and itself requires significant effort to keep running on these services. Main-
taining and improving CI will be the second task ongoing throughout the grant period. In
particular, we will:

1. Update CI configurations and tooling so they are the same for each project, thereby
sharing maintenance cost,

5

2. Enable CI for new Python versions when those become available,
3. Improve hardware platform support, in particular for platforms that only recently became

available like ARM64 Linux, ARM64 macOS, and PowerPC.
4. Update how releases get made via CI, so a single commit will build all release artifacts

for a given release tag, and
5. Update build systems for the pending deprecation of the distutils module in the

Python standard library.

Our other maintenance efforts will be driven by the outcome of issue triaging, and focus on
code review (which is much more of a bottleneck than writing new code to fix bugs) and on
identified structural issues in the code base that are too large or complex for a volunteer to
tackle in their spare time. Overall we aim to spend one third of the engineering time in this
grant on maintenance, and ensure that the issue and PR count is stable or decreasing over
time - which is the best metric we know of for sustainability.

1.4.2 Performance improvements

Speed improvements, lower memory usage and the ability to parallelize algorithms are benefi-
cial to most science domains and use cases - and in particular to data-intensive domains such
as earth observation and astrophysics. They were also the top priority in the recent NumPy
user survey with over 1200 respondents [12]. Therefore performance will be one of the main
themes of the technical work we propose; we’ll focus on this for the duration of the program.
We identify a number of concrete work items here which will be augmented by user feedback:

Performance benchmarking suites based on Airspeed Velocity are present in each project,
however they (a) cover only a small fraction of the code base, and (b) they do not get
run automatically on dedicated hardware as part of CI. Therefore we will set up such
dedicated hardware, make that connection to CI, and publish the results of each run to
a website, with any performance regressions flagged for investigation. The benchmark
coverage will be extended from the current coverage, estimated at 5-15% of functions, to
≥ 50% for each project. Finally, we will add benchmarks for memory usage of functions.
This benchmarking strategy will then be used to validate performance improvements we
will implement.

SIMD usage in NumPy. Improving NumPy performance will have a positive impact on almost
every use case. We will optimize the performance of key NumPy array operations (e.g.
indexing) and core functionality like ufuncs via strategic use of newer CPU hardware
acceleration features, i.e. SIMD instructions. This work will build on the universal SIMD
architecture introduced recently in NumPy [13].

Pandas memory usage optimizations. Pandas was designed internally for optimal perfor-
mance (zero copying) on 2D NumPy arrays. However, pandas dataframe construction
from 1D arrays has become a widespread use-case. Furthermore, pandas often makes
unnecessary copies. These two factors together result in excessive memory usage,
which is often the limiting factor in performance. Based on the memory benchmarks and
API usage data [14], we will optimize memory usage hotspots.

Parallelization interface in SciPy. The original SciPy code did not emphasize parallel execu-

6

tion. However, over the past decade, trends in microprocessor architecture indicate that
clock speeds are stagnant but the numbers of CPU cores per chip are increasing [15].
The core SciPy routines therefore need to be updated to take advantage of modern
hardware. SciPy has a "workers" API pattern, which is used in a few sets of functionality
like FFTs and k-D trees. We will build on this pattern, and add support for it to all SciPy
optimization functionality.

Cython performance optimizations. Cython 3.0 is about to be released, and it is the first
release with full support for the new (post-1.7) NumPy C API. Scikit-learn makes exten-
sive use of Cython; we will update its code base for Cython 3.0, which will bring both
opportunities to improve performance for code using the NumPy C API and to switch to
Cython memoryviews where those are more efficient.

1.4.3 GPU and distributed array support

Hardware for scientific computing is becoming more heterogeneous every year. Python users
are often requesting better support for their particular hardware, e.g. for HPC systems [16] or
deep learning applications [17]. Significant exploratory work by the NumPy community [18, 19]
has established that it is possible to standardize a set of NumPy APIs and via a dispatch mech-
anism support use of CuPy, Dask, JAX and other NumPy-compatible packages in downstream
libraries. Implementation requires the teams to coordinate on the exact APIs to support, for-
malize that set of APIs in NumPy, and then add support for the dispatching mechanism in
SciPy and scikit-learn. GPU usage via CuPy will be the first target, because CuPy implements
nearly 100% of the NumPy API.

1.4.4 Improved string dtypes

NumPy is coming towards the end of a large redesign of its dtype ("data type") system [20].
This gives the opportunity to add new string dtypes for encoded strings (e.g., UTF-8) and
variable-length strings, an explicit goal on the NumPy roadmap [21]. We will add both of these
dtypes. The variable-length string dtype will then be used in pandas, which as of today is
forced to use the "object" dtype to store string data in dataframe columns. This will yield both
usability improvements and easier to understand code within pandas.

1.4.5 Pandas dataframe support in scikit-learn

Scikit-learn was originally designed only with NumPy arrays in mind, however recently support
for accepting pandas dataframes without conversion to NumPy arrays was added. One im-
portant feature still missing [22] is the ability for transformers to return dataframes rather than
arrays when they receive a dataframe as input. We will add this feature. Furthermore we will
improve memory usage by avoiding unnecessary data copies where possible. Such memory
copies are often triggered because scikit-learn code was written for 2-D arrays while pandas
dataframes are a collection of 1-D arrays that are not stored contiguously in memory. They
can often be avoided by an explicit code path.

7

1.4.6 Optimization functionality in SciPy

SciPy’s linear programming functionality is missing some oft-requested functionality; we will
address this by adding interfaces to the best available open source libraries available. SciPy
1.6.0 made a start by adding the HiGHS Linear Programming solvers. We will extend that
interface to include the HiGHS mixed-integer programming capabilities. Separate interfaces to
CLP (linear programming), CBC (mixed-integer programming) and Ipopt (nonlinear program-
ming). Each of these solvers is written in C++; this will be exposed to Python via Cython, and
tests will be written in Python.

1.5 Sources of uncertainty & mitigation

NumPy, pandas, SciPy and scikit-learn are community-driven open source projects. Decision
making is by consensus, with a Steering Council (a small group of senior core developers)
stepping in only in case consensus cannot be reached. Because of the central position of these
projects in the wider PyData ecosystem, new features get scrutinized heavily, and hence there
is a risk of them being rejected. For maintenance work and performance optimizations that
risk is minimal. The two deliverables with a non-negligible amount of uncertainty are the GPU
and distributed array support, and the improved string dtypes. Each of these two deliverables
is included prominently on the project roadmaps. The topics and benefits have already been
discussed multiple times by the core development teams; inclusion on the roadmap means
the features are desirable and the risk is limited to smaller decisions related to the precise
implementation.

We mitigate the risk as follows:

1. The team for the proposed work includes senior maintainers of each project. Part of their
role is to align with their co-maintainers and the wider community before the work starts,
to ensure possible concerns are raised early and interested people can follow along with
the design and implementation work.

2. Each deliverable will be proposed via an "enhancement proposal" to the project, in which
topics like benefits to end users, maintainability and backwards compatibility are ad-
dressed explicitly.

3. If it turns out to be necessary after review of either the enhancement proposals or the im-
plementation, the features may be implemented via "feature flags" that let users explicitly
opt in to the new features, so the introduction can be gradual.

The estimated effort for the proposed work also contains uncertainty, as for any software
project. We intend to mitigate this by applying best practices for agile development, and by
tackling the complex tasks that are dependencies for other tasks (in particular the string dtypes
and the array API standardization) early on so potential issues surface in time.

8

1.6 Team composition and responsibilities

This proposal brings together leading figures of each of the four participating projects. They
are ideally positioned to make contributions with ecosystem-wide impact and coordinate ef-
forts across packages. Tyler Reddy is a core developer of both NumPy and SciPy, and the
SciPy release manager. He will oversee contributions to these projects, as well as perform
SciPy releases and extend support for new hardware platforms and Python versions. An-
dreas Mueller has been a scikit-learn core developer for over 10 years, while Jeff Reback
has co-lead pandas for the past 8 years. They will oversee the contributions to scikit-learn and
pandas, respectively. Matt Haberland is a SciPy core developer. He will deliver the proposed
new optimization features for SciPy. In addition, he will build on his previous efforts mentor-
ing undergraduate research assistants at Cal Poly to contribute to SciPy. Thomas Fan has
been a full-time scikit-learn core developer for the past two years. He will develop the GPU
and distributed array support - that he already led the exploratory feasibility work on - and the
zero-copy pandas dataframe support.

We combine this group of core developers with the experience of Dharhas Pothina (PI) lead-
ing teams delivering both open source and commercial projects related to the PyData stack
as consulting lead at Quansight. Pothina has 15+ years of experience with these projects, and
will act as the engineering manager for the project.

Past experience with funded work on community open source projects has taught us that the
most effective strategy for team building is to combine experienced maintainers with hiring
developers new to the community. This ensures the number of active maintainers grows over
time - essential to the health of these projects which are still largely volunteer-driven - and that
it brings in new skills and energy. Importantly, it is also an opportunity to increase the diversity
of the projects. We intend to place a strong focus on bringing in people from under-represented
minority groups.

We include two roles that focus on cross-project contributions, with one engineer focusing on
continuous integration (CI) and packaging infrastructure, and the other on performance (speed
and memory usage) improvements. Transferring best practices and sharing infrastructure tool-
ing between the open source projects will increase the maintainability of the code bases. A
third new software engineer will contribute to both NumPy and pandas, with a focus on string
dtypes and user-defined functions. A fourth software engineer (half-time) will focus on GPU
and distributed array support in SciPy, learning from the experience of Thomas Fan doing the
same for scikit-learn.

These engineers will join Dharhas Pothina and Thomas Fan at Quansight Labs, which was
created as a home for PyData developers by the creator of NumPy and SciPy (Travis Oliphant)
and employs a significant numbers of founders and maintainers of PyData projects. Quansight
Labs is already an Institutional Partner to both NumPy and SciPy, and provides an optimal
environment for the engineers to learn about open source best practices and integrate into the
PyData community.

Parts of this proposal will be executed by sub-awards to Los Alamos National Lab (for Tyler
Reddy) and Cal Poly (for Matt Haberland).

9

1.7 Work plan

We will have two types of activities: (a) ongoing tasks like maintenance, issue triaging and
code review, and (b) milestones for new feature and performance improvement deliverables.

As a team we will spend one third of our time on ongoing tasks, with each team member
contributing to those tasks. We will track the progress towards milestones via agile project
management, with daily checkins via Slack and weekly project meetings. Each deliverable
has a target date for initial merge into the main branch of the relevant open source project, and
a phase after that to address potential issues, write tutorials and developer documentation,
and help downstream projects adopt the feature.

The key milestones for year 1 are:

• Set up benchmarking infrastructure and complete the benchmark suites,
• Implement string dtypes in NumPy,
• Array API standardization support in NumPy,
• Memory use optimizations in pandas,
• HiGHS interface for mixed-integer optimization in SciPy, and
• Pandas dataframe support in scikit-learn.

The key milestones for year 2 are:

• SIMD performance optimizations in NumPy,
• Adopt new string dtypes in pandas,
• GPU array suport via CuPy in scikit-learn and SciPy,
• CLP and CBC wrappers in SciPy,

The key milestones for year 3 are:

• Extend use of Numba in pandas user-defined functions,
• Distributed array support via Dask in scikit-learn and SciPy,
• Ipopt wrapper in SciPy,
• Complete Cython optimizations in scikit-learn,

The timeline for these milestones and dependencies between them are shown in figure 2. The
management structure for the project is shown in figure 3.

1.7.1 Knowledge dissemination

Estimates of the size of the user base of NumPy, pandas, SciPy and scikit-learn range from
five to forty million users. Disseminating knowledge at this scale is best done via documen-
tation. We will produce three forms of documentation for each deliverable: tutorials aimed
at discovering and learning the features, detailed API reference documentation, and design
documentation aimed at future developers.

10

08/2021 07/2024
01/2022 01/2023 01/2024

Legend
Deliverable

Support or ongoing activity

A
ll

p
ro

je
ct

s
N

u
m

P
y

S
ci

P
y

sc
ik

it
-l

ea
rn

Issue triaging & code review

Maintenance

CI & packaging improvements

Benchmarking - infrastructure
deployed

Writing benchmarks

Implement new string dtypes

Performance improvements
(SIMD)

Array API standardization support

Adopt NumPy's new string dtypes

Extend use of Numba in UDFs

Memory usage optimizations

GPU array support (CuPy)

Distributed array support (Dask)

Parallelize algorithms via workers
keyword

Large-scale optimization features

GPU array support (CuPy)

Distributed array support (Dask)

Zero-copy Pandas dataframe
support

Performance optimizations
(Cython)

P
an

d
as

HiGHS CLP, CBC IPOPT

Figure 2: Gantt chart of deliverables and ongoing activities for common activities over projects,
and for NumPy, pandas, SciPy and scikit-learn.

1.7.2 Governance and development model

Each of the open source projects we propose work on has a formal governance structure [23,
24, 25, 26], uses the permissive 3-clause BSD license, and has well-established and docu-
mented practices of collaborative development which takes place on GitHub. The engineers
executing the proposed work will perform all work, including early prototyping and design dis-
cussions, in public and will follow the existing development guidelines. This includes:

1. For new features, propose the feature on the mailing list or (for larger features) via a
formal "enhancement proposal",

2. For bug fixes and other maintenance work, submit a pull request on GitHub and address
review comments that other community members may have on it,

3. For topics requiring high-bandwidth conversations, hold those in publicly announced
community where possible - and at a minimum, give summaries of important offline
conversations there.

11

P
ro

je
ct

 &
 c

o
m

m
u

n
it

y
le

ad
s

E
n

g
in

ee
ri

n
g

te

am

Dharhas Pothina
PI

Thomas Fan

Matt Haberland
SciPy

Tyler Reddy
NumPy / SciPy

Jeff Reback
Pandas

Andreas Mueller
scikit-learn

Cal Poly
student

sw. eng.
NumPy & Pandas

sw. eng.
SciPy

sw. eng.
CI & packaging

sw. eng.
performance

Figure 3: Management structure for the project.

1.7.3 Sustainability

We follow a few key principles to ensure that our proposed activities increase the long-term
sustainability of the projects and the community around it:

1. Funded developers must make the life of volunteer contributors easier rather than harder.
This implies they have to do more than their fair share of, e.g., code review and main-
taining infrastructure and websites.

2. Do not increase the amount of technical debt. This means for example that meeting
milestones may not be an excuse for taking shortcuts, and that existing technical debt
should be addressed when it is encountered during the process of adding a new feature.

3. Pay received mentorship forward. This can be done for example by helping onboard new
contributors and improving developer documentation.

We can measure sustainability, at least partially, through:

1. The number of active maintainers, and the number of unique contributors per release or
time period.

2. Release frequency - each project does feature release at least twice a year, and bugfix
releases more often.

3. The median time duration for first review of a pull request or response to an issue.
4. The balance between number of issues opened vs. closed, and pull requests opened

vs. merged.

Furthermore, we would like to emphasize that this proposed work would be the first funded
work that spans across these projects and shares engineers who focus on core needs of the
projects like CI and packaging improvements. NumPy, pandas, SciPy and scikit-learn devel-
opers have been collaborating informally for a long time; this work will significantly strengthen
those links, which enhances knowledge sharing and builds community - both important for
sustainability.

12

1.7.4 Community & inclusivity

NumPy, pandas, SciPy and scikit-learn, as large community projects driven mostly by vol-
unteers, all have a strong interest in community building. They each have a Code of Con-
duct [27, 28, 29, 30], and extensive contributing guidelines - from pull request templates to
long-form tutorials on how to build the project and submit a pull request. Each project holds
multiple in-person or virtual sprints coinciding with SciPy or PyData conferences where every-
one is welcome and the focus is on onboarding newcomers. NumPy, pandas and scikit-learn
each have also given talks to or held events for groups like Data Umbrella and Women in Ma-
chine Learning and Data Science that focus on under-represented groups in STEM or open
source, and SciPy is currently planning an event with "Mentored Sprints" for diverse beginners.

We aim for this proposal team to actively participate in and help organize such community
building activities. In addition, we’d like to emphasize that we will put a strong emphasis on
creating a diverse team through focusing on attracting a diverse set of applicants for the roles
that we need to hire for.

13

References

[1] Nasa advanced software technology group (astg) spring 2021 python classes. https:
//www.nccs.nasa.gov/nccs-users/user-events/python-classes.

[2] Nasa advanced software technology group (astg) python training opportunities. https:
//modelingguru.nasa.gov/docs/DOC-2775.

[3] Nasa high-end computing capability (hecc) knowledge base - machine learning. https:
//www.nas.nasa.gov/hecc/support/kb/machine-learning-173/.

[4] Engineering National Academies of Sciences and Medicine. Open Source Software Pol-
icy Options for NASA Earth and Space Sciences. The National Academies Press, Wash-
ington, DC, 2018.

[5] Joseph Harrington, Ralf Gommers, Chelle Gentemann, Derek Buzasi, Kevin Stevenson,
Joshua Pepper, Perry Greenfield, Shubham Kanodia, Thomas Beatty, Ryan Challener,
Joe Ninan, Jessie Christiansen, Arif Solmaz, Erik Tollerud, Nicholas Earl, Pey Lian Lim,
Larry Bradley, Elisabeth Newton, Rachel Akeson, Megan Sosey, Philip Hodge, Paulo
Miles-Páez, Kathleen Labrie, Henry Ngo, Sara Ogaz, Darren Williams, Michael Himes,
Kathleen McIntyre, Adrienne Dove, Joshua Colwell, Joe Llama, Ryan T. Hamilton, Geert
Barentsen, and Ryan Terrien. Support the Python Numerical Core. In Bulletin of the
American Astronomical Society, volume 51, page 265, September 2019.

[6] Nasa explore: Vision 2020-2024, a vision for science excellence. https:
//science.nasa.gov/science-red/s3fs-public/atoms/files/2020-2024_
Science-TAGGED.pdf.

[7] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virta-
nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Al-
lan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with numpy. Nature, 585(7825):357–
362, Sep 2020.

[8] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22–30,
2011.

[9] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov,
Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, Aditya Vijaykumar, Alessandro Pietro
Bardelli, Alex Rothberg, Andreas Hilboll, Andreas Kloeckner, Anthony Scopatz, Antony
Lee, Ariel Rokem, C. Nathan Woods, Chad Fulton, Charles Masson, Christian Häg-
gström, Clark Fitzgerald, David A. Nicholson, David R. Hagen, Dmitrii V. Pasechnik,
Emanuele Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Felix Lenders, Florian Wilhelm,

14

G. Young, Gavin A. Price, Gert-Ludwig Ingold, Gregory E. Allen, Gregory R. Lee, Hervé
Audren, Irvin Probst, Jörg P. Dietrich, Jacob Silterra, James T. Webber, Janko Slavič, Joel
Nothman, Johannes Buchner, Johannes Kulick, Johannes L. Schönberger, José Vinícius
de Miranda Cardoso, Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodríguez,
Juan Nunez-Iglesias, Justin Kuczynski, Kevin Tritz, Martin Thoma, Matthew Newville,
Matthias Kümmerer, Maximilian Bolingbroke, Michael Tartre, Mikhail Pak, Nathaniel J.
Smith, Nikolai Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk, Per A. Brodtkorb, Perry
Lee, Robert T. McGibbon, Roman Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert,
Sebastiano Vigna, Stefan Peterson, Surhud More, Tadeusz Pudlik, Takuya Oshima,
Thomas J. Pingel, Thomas P. Robitaille, Thomas Spura, Thouis R. Jones, Tim Cera,
Tim Leslie, Tiziano Zito, Tom Krauss, Utkarsh Upadhyay, Yaroslav O. Halchenko, Yoshiki
Vázquez-Baeza, and SciPy 1.0 Contributors. Scipy 1.0: fundamental algorithms for sci-
entific computing in python. Nature Methods, 17(3):261–272, Mar 2020.

[10] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. Scikit-learn: Machine learning in python. J. Mach. Learn.
Res., 12:2825–2830, November 2011.

[11] Wes McKinney. Data structures for statistical computing in python. In Proceedings of the
9th Python in Science Conference, volume 445, pages 51–56. Austin, TX, 2010.

[12] Ralf Gommers. NumPy Steering Council, personal communication, 2021.
[13] NEP 38 — using SIMD optimization instructions for performance. https://numpy.org/

neps/nep-0038-SIMD-optimizations.html, 2020.
[14] Python API inspect - statistics to better understand how python is used and written.

https://github.com/Quansight-Labs/python-api-inspect, 2019.
[15] Karl Rupp and Siegfried Selberherr. The Economic Limit to Moore’s Law. IEEE Transac-

tions on Semiconductor Manufacturing, 24(1):1–4, 2011.
[16] Rollin Thomas. NERSC, personal communication, 2019.
[17] Sukwon Kim. Amazon, personal communication, 2019.
[18] NumPy Enhancement Proposals for dispatching - NEPs 18, 30, 31, 35 and 37. https:

//numpy.org/neps, 2020.
[19] Consortium for Python Data API Standards. https://data-apis.org, 2020.
[20] NumPy dtype redesign — NumPy Enhancement Proposals 40, 41, 42, 43. https://

numpy.org/neps/nep-0040-legacy-datatype-impl.html, 2019.
[21] NumPy roadmap. https://numpy.org/neps/roadmap.html],.
[22] Scikit-learn roadmap. https://scikit-learn.org/stable/roadmap.html.
[23] NumPy governance document. https://numpy.org/devdocs/dev/governance/

index.html.
[24] Pandas governance document. https://github.com/pandas-dev/

pandas-governance.
[25] SciPy governance document. http://scipy.github.io/devdocs/dev/governance/

governance.html.

15

[26] Scikit-learn governance document. https://scikit-learn.org/stable/governance.
html.

[27] NumPy code of conduct. https://numpy.org/code-of-conduct/.
[28] Pandas code of conduct. https://github.com/pandas-dev/pandas-governance/

blob/master/code-of-conduct.md.
[29] SciPy code of conduct. http://scipy.github.io/devdocs/dev/conduct/code_of_

conduct.html.
[30] Scikit-learn code of conduct. https://github.com/scikit-learn/scikit-learn/

blob/master/CODE_OF_CONDUCT.md.

16

2 Data Management Plan (DMP)

NumPy, pandas, SciPy and scikit-learn are software libraries and do not produce any scientific
data as defined in E.1.2 that needs to be preserved.

All software code and documentation for these projects is stored in Git repositories on GitHub
under these organizations:

• https://github.com/numpy/
• https://github.com/pandas-dev/
• https://github.com/scipy/
• https://github.com/scikit-learn/

Copies ("clones") of each repository are kept locally by developers on the project, and all
released software versions are also archived on PyPI and in multiple other places (e.g., on
anaconda.org and in Linux distributions). The proposed work will rely on these existing meth-
ods of managing and archiving software code and documentation.

The license for all produced code and documentation is the BSD 3-Clause License, one of the
most common and permissive open source software licenses.

17

3 Biographical Sketches

Dharhas Pothina, Director of Consulting, Quansight
8656 W. Hwy 71, Bldg F200, Austin, Texas 78735, Ph. 512-740-5665

Relevant Experience

15+ years of experience in state and federal research labs leading large multi-disciplinary,
multi-agency research projects. Track record of changing culture and pioneering open source
technologies within the government. Expertise in computational modeling, big data/high per-
formance computing, visualization and geospatial analysis. SciPy conference executive com-
mittee (2020, 2016, 2013, 2012). 2021 Dask Distributed Summit Program Co-Chair. Core
developer of the "ulmo" ocean-met data retrieval library. Co-creator of "Qhub", an open source
project which streamlines cloud and HPC deployments of JupyterHub and Dask.

Education

Ph.D., Civil Engineering, University of Texas at Austin (USA) 2009
Thesis title: “A multimodel approach to modeling bay circulation in shallow bay-ship channel
systems”
M.S., Aerospace Engineering, University of Texas at Austin (USA) 2002
Thesis title: “A Coupled Discontinuous/Continuous Finite Element Method for Hydrodynamic
Simulations Using the Shallow Water Equations”

Current Positions

Director of Consulting, Quansight 2019–Present
Senior solution architect for $5M-$8M/yr of client projects involving the open source scientific
Python ecosystem. Projects included contributions to core PyData open source libraries, such
as Numba, JupyterLab, JupyterHub, Dask, Holoviz and Pytables.

Past Positions

US Army Engineer R&D Center, Associate Technical Director 2016–2019
Technical Program Manager over $8M/yr portfolio of research in CFD, environmental simula-
tion, big data visualization, web-based workflow automation and AI/ML
US Army Engineer R&D Center, Research Computer Engineer 2014–2016
Topics: Workflow Automation, Met-Ocean Modeling, Geospatial Analytics, Visualization of
Massive Geospatial Datasets
Texas Water Development Board, Water Informatics Lead 2009–2014
Topics: Led Data, Modeling and GIS Teams, Image Processing, Workflow Automation, Data
Publication
Texas Water Development Board, Coastal Modeler/Scientific Software Developer 2003–2009
Topics: FEM/CFD, Hydrodynamics, GIS, Coastal Ocean Studies

18

Selected Publications

h-index: 4, total citations: 207 (citation statistics: Google Scholar, January 18, 2021)

1. R.P. Signell, D. Pothina (2019), Analysis and visualization of coastal ocean model data
in the cloud, Journal of Marine Science and Engineering 7 (4), 110

2. S.D. Christensen, D. Pothina, A. Valoroso, K. Winters (2018), Automated Data Discov-
ery, Retrieval, Manipulation, and Publication using Python, Tethys, and HydroShare, 9th
International Congress on Environmental Modelling and Software

3. D. Pothina, P.J.F. Rudiger, J.A. Bednar, S. Christensen, K. Winters, K. Pevey, C. Ball, G.
Brener (2018), EarthSim: Flexible Environmental Simulation Workflows Entirely Within
Jupyter Notebooks, Proc.. of the 17th Python in Science Conf. 48-55

4. H. Huang, Y. Du, D. Pothina, J. Matsumoto, S. Negusse (2013), Corpus Christi Bay
Three-Dimensional Hydrodynamics and Salinity Simulations Using Finite-Volume Coastal
Ocean Model (FVCOM), Estuarine and Coastal Modeling (2011), 46-65

5. V. Aizinger, J. Proft, C. Dawson, D. Pothina, S. Negusse, A three-dimensional discontin-
uous Galerkin model applied to the baroclinic simulation of Corpus Christi Bay (2013),
Ocean Dynamics 63 (1), 89-113

6. D. Pothina, A. Wilson (2011), Using Python, Partnerships, Standards and Web Services
to provide Water Data for Texans, Proc of 10th Python in Science Conference. 39-42

7. C. Dawson, J.J. Westerink, J.C. Feyen, D. Pothina (2006), Continuous, discontinuous
and coupled discontinuous–continuous Galerkin finite element methods for the shallow
water equations, International Journal for Numerical Methods in Fluids 52 (1), 63-88

19

Andreas Christian Müller, Principle Research SDE, Microsoft
email: andreas.mueller.ml+cv@gmail.com

Professional Activities

Core developer and member of the Technical Committee for the machine learning package
"scikit-learn". Creator of the "dabl" library for human-in-the-loop data science. Creator of the
Python package "PyStruct" for structured prediction. Co-author of "CUV", a C++ and Python
interface for CUDA, targeted at deep learning. Contributor to the Python computer vision pack-
age "scikit-image". Action Editor, Journal of Machine Learning Research, OSS Track

Awarded Grants:

• Scikit-learn maintenance and enhancement to gradient boosting and search (PI). Chan-
Zuckerberg $150k. 2019-2020.

• Extension & Maintenance of Scikit-learn (PI). Alfred P. Sloan Foundation. $313k. 2017-
2019.

• Analysis and Extension of Scikit-learn (PI). Bloomberg. $63k. 2017-2018.
• SI2-SSE: Improving Scikit-learn usability and automation (PI). NSF. $400k. 2017-2020.
• Building Blocks and Search Improvements for Automated Machine Learning (PI). DARPA.

$351k. 2018.

Past Positions

Associate Research Scientist, Columbia University 2016 - 2020
Teaching in the Data Science Master program, scikit-learn development Research Engineer,
NYU Center for Data Science 2014 - 2016
Development of open source tools for machine learning and data science Machine Learning
Scientist, Amazon (Germany) 2013 - 2014
Design and implementation of large-scale machine learning and computer vision applications
Ph.D., Computer Science, University of Bonn (Germany) 2010-2013

Selected Publications

h-index: 13, total citations: 4207 (citation statistics: Google Scholar, January 12, 2021)

1. D. Scherer, A. Müller, and S. Behnke (2010). Evaluation of pooling operations in convo-
lutional architectures for object recognition. Proceedings of the International Conference
on Artificial Neural Networks (ICANN). Springer, pp.92–101.

2. A. Müller, S. Nowozin, and C. Lampert (2012). Information Theoretic Clustering Using
Minimum Spanning Trees. Proceedings of DAGM / OAGM, pp.205–215.

3. A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Müller, Müller, J. Kossaifi, A.
Gramfort, B. Thirion, and G. Varoquaux (2014). Machine learning for neuroimaging with
scikit-learn. Frontiers in Neuroinformatics.

4. A. Müller, and S. Behnke (2014). PyStruct: Structured Prediction in Python. Journal of
Machine Learning Research.

5. G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Müller (2015).
Scikit-learn: Machine Learning Without Learning the Machinery. GetMobile: Mobile
Computing and Communications 19(1), 29–33.

6. A. Müller, and Guido, S. (2016). Introduction to Machine Learning with Python. O’Reilly.

20

Tyler Reddy, Staff Scientist Level 2, Los Alamos National Laboratory

Relevant Experience

Core developer of the SciPy, NumPy, and MDAnalysis libraries. Steering Council member and
release manager for SciPy.

Past Positions

Los Alamos National Laboratory, Staff Scientist Level 2 2018 - Present
Topics: build system maintenance; computational geometry
Los Alamos National Laboratory, Director’s Fellow 2017 - 2018
Topics: HIV-1 and viruses as bioenergetic containers
Oxford University (UK), Postdoctoral Research Associate 2011 - 2017
Topics: Influenza virion, Dengue Virion, Class III viral fusion proteins characterized with molec-
ular dynamics simulations
Ph.D., Biochemistry & Molecular Biology, Dalhousie University (Canada) 2011
Thesis title: “Structure, flexibility, and overall motion of transmembrane peptides studied by
NMR spectroscopy and molecular dynamics simulations”

Selected Publications

h-index: 18, total citations: 3855 (citation statistics: Google Scholar, January 12, 2021)

1. Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virta-
nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Al-
lan Haldane, Jaime Férnandez del Río, Mark Wiebe, Pearu Peterson, Pierre G érard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, Travis E. Oliphant (2020) Array Programming with NumPy. Nature 585: 357-362.
[Citations: 286]

2. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Po-
lat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio
H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020)
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods.
17: 261-272. [Citations: 2474]

3. Reddy, T. and Sansom, M.S.P. (2016) The Role of the Membrane in the Structure and
Biophysical Robustness of the Dengue Virion Envelope. Structure 24: 375-382. [Cita-
tions: 56]

4. Reddy, T., Shorthouse, D., Parton, D., Jefferys, E., Fowler, P.W., Chavent, M., Baaden,
M., and Sansom, M.S.P. (2015) Nothing to sneeze at: a dynamic and integrative compu-
tational model of an influenza A virion. Structure. 23: 584-597. [Citations: 71]

21

Matt Haberland, Assistant Professor, BioResource and Agricultural Engineering,
California Polytechnic State University, San Luis Obispo

Relevant Experience

Core developer and Steering Council member of the SciPy library. Author of 374 commits,
including SciPy’s Python implementations of interior-point and revised simplex methods for
linear programming and SciPy’s interface to the HiGHS linear programming solvers.

Awarded Grants:

• A Solid Foundation for Statistics in Python with SciPy (Co-PI). Chan-Zuckerberg Initia-
tive. $200k. 2019-2021.

• Enhanced LAPACK Support in SciPy (PI). NumFOCUS. $4.9k. 2019-2020.
• SciPy Development Documentation Overhaul (PI). NumFOCUS. $4.2k. 2019.
• An Efficient, High-Level Implementation of Linear Programming (PI). NumFOCUS. $2k.

2018-2019.

Past Positions

California Polytechnic State University, San Luis Obispo, Assistant Professor 2018–Present
Topics: Linear programming, numerical linear algebra, statistics computation
UCLA, Assistant Adjunct Professor in the Program in Computing 2014–2018
Topics: Robotic swarm control, body-worn video classification
Jet Propulsion Laboratory, Member of Technical Staff, Associate Level 2007–2009
Topics: created the contact sensor / stabilizer for Mars Science Laboratory rock drill
Ph.D., Mechanical Engineering, Massachusetts Institute of Technology (USA) 2014
Thesis title: “Extracting principles from biology for application to running robots”

Selected Publications

h-index: 9, total citations: 2803 (citation statistics: Google Scholar, January 17, 2021)

1. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., et al. (2020) SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 17:
261–272. [Citations: 2474]

2. Li, H., Chen, H., Haberland, M., Bertozzi, A.L., and Brantingham, J.P. (2021) PDES on
Graphs for semi-supervised learning applied to first-person activity recognition in body-
worn video. Accepted for publication in Discrete and Continuous Dynamical Systems
A.

3. Qiao, Y., Shi, C., Wang, C., Li, H., Haberland, M., Luo, X., Stuart, A. M., & Bertozzi, A.
L. (2019). Uncertainty Quantification for Semi-Supervised Multi-Class Classification in
Image Processing and Ego-Motion Analysis of Body Worn Videos. Electronic Imaging
2019. 11 (2019): 264-1–264-6. [Citations: 4]

4. Li, H., Feng, C., Ehrhard, H., Shen, Y., Cobos, B., Zhang, F., Elamvazhuthi, K., Berman,
S., Haberland, M., and Bertozzi, A.L. Decentralized stochastic control of robotic swarm
density: Theory, simulation, and experiment. 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017. [Citations: 26]

22

4 Current and Pending Support

Dharhas Pothina (PI): no current or pending support.

Matt Haberland (co-I) has the following current support:

1. • Title: A Solid Foundation for Statistics in Python with SciPy
• PI: Matt Haberland
• Program name: Essential Open Source Software for Science
• Sponsoring organization: Chan Zuckerberg Initiative via NumFOCUS
• Program officer: Dario Taborelli, (415) 990-0646, dario@chanzuckerberg.com,
• Performance period: 2/1/2020 to 1/31/2021
• Total amount received: $69,090
• Time commitment: 9%

2. • Title: Robotic Control of Yellow Starthistle
• PI: Matt Haberland
• Program name: ARI Seed Grant
• Sponsoring organization: CSU Agricultural Research Institute
• Program officer: Sue Tonik, (805) 756-7241, stonik@calpoly.edu
• Performance period: 7/1/2019 to 6/30/2021
• Total amount received: $5,000
• Time commitment: 2%

and no pending support.

Tyler Reddy (co-I): no current or pending support.

Thomas Fan has the following current support:

1. • Title: Improved Interoperability Between Scikit-learn Models and Data-Driven Dis-
covery of Models

• PI: Hod Lipson
• Program name: Data-Driven Discovery of Models (D3M)
• Sponsoring organization: California Institute of Technology Jet Propulsion Labora-

tory
• Contact at sponsoring organization: Chris Mattmann, (818) 354-8810,

chris.a.mattmann@jpl.nasa.gov
• Performance period: 05/15/2020 to 03/31/2021
• Total amount received: $174,74
• Time commitment: 100%

5 Statements of Commitment

Andreas Müller and Jeff Reback participate in this proposal as part of their open source work
on and leadership of scikit-learn and pandas, respectively. Microsoft is providing Müller work
time for scikit-learn activities. Reback’s contribution isn’t directly connected to his employ-
ment, therefore he lists NumFOCUS - the 501(c)3 nonprofit with which pandas is affiliated - as
participating organization.

23

1/18/2021 Quansight Mail - statement of commitment for NASA proposal

https://mail.google.com/mail/u/0?ik=24d6cfa5e9&view=pt&search=all&permthid=thread-f%3A1689262444728039442&simpl=msg-f%3A1689262444728039442 1/1

Dharhas Pothina <dharhas@quansight.com>

statement of commitment for NASA proposal
1 message

Jeff Reback <jreback@yahoo.com> Mon, Jan 18, 2021 at 3:43 PM
Reply-To: Jeff Reback <jeff@reback.net>
To: "dharhas@quansight.com" <dharhas@quansight.com>
Cc: Ralf Gommers <rgommers@quansight.com>, Jeff Reback <jeffreback@gmail.com>

I acknowledge that I am identified by name as Collaborator to the investigation, entitled "Reinforcing the
Foundations of Scientific Python", that is submitted by Dharhas Pothina (Quansight) to the NASA funding
announcement, and that I intend to carry out all responsibilities identified for me in this proposal. I understand that
the extent and justification of my participation, as stated in this proposal, will be considered during peer review in
determining in part the merits of this proposal. I have read the entire proposal, including the management plan
and budget, and I agree that the proposal correctly describes my commitment to the proposed investigation. To
conduct work for this investigation, my participating organization is NumFOCUS.

accepted & agreed

Jeff Reback
jreback - Overview

jreback - Overview
jreback has 47 repositories available. Follow their code on
GitHub.

24

1/19/2021 Quansight Mail - statement of commitment for NASA proposal

https://mail.google.com/mail/u/0?ik=24d6cfa5e9&view=pt&search=all&permmsgid=msg-f%3A1689350869500165392&simpl=msg-f%3A1689350869500165392 1/1

Dharhas Pothina <dharhas@quansight.com>

statement of commitment for NASA proposal

Andreas Mueller <andreas.mueller@microsoft.com> Tue, Jan 19, 2021 at 3:08 PM
To: "dharhas@quansight.com" <dharhas@quansight.com>
Cc: Ralf Gommers <rgommers@quansight.com>

I acknowledge that I am identified by name as Collaborator to the investigation, entitled "Reinforcing the
Foundations of Scientific Python", that is submitted by Dharhas Pothina (Quansight) to the NASA funding
announcement, and that I intend to carry out all responsibilities identified for me in this proposal. I understand that
the extent and justification of my participation, as stated in this proposal, will be considered during peer review in
determining in part the merits of this proposal. I have read the entire proposal, including the management plan and
budget, and I agree that the proposal correctly describes my commitment to the proposed investigation. To conduct
work for this investigation, my participating organization is Microsoft.

Best,
Andreas

25

6 Budget Justification

This proposal combines 4 established community driven projects: NumPy, SciPy, pandas and
scikit-learn. By working together as a team we expect to be able to achieve tighter integration
between the technologies and work more efficiently than if each project submitted individual
proposals. Specifically, the proposed work involves coordination and cross project infrastruc-
ture development that would not be possible otherwise. Hence, the budget being requested is
proportionally higher that would typically be requested in an individual proposal.

Additionally, regular contributors to these projects have established and distinct primary in-
stitutions. For this reason portions of the budget will need to be subawarded to the primary
institutions of the key individuals who are uniquely qualified for this work. The team will be
organized according to table 1.

Effort
Personnel Year 1 Year 2 Year 3

Dharhas Pothina (PI) 20% 10% 5%

Tyler Reddy (co-I) 10% 10%

Matt Haberland (co-I) 12% 9% 9%

Andreas Mueller (unfunded) 10% 10% 5%

Jeff Reback (unfunded) 10% 10% 5%

Thomas Fan 50% 75% 75%

Software engineer - NumPy & pandas 60% 60% 70%

Software engineer - SciPy 40% 40% 40%

Software engineer - CI & packaging 40% 40% 40%

Software engineer - performance 40% 40% 40%

Undergraduate research assistant 20% 15% 15%

Table 1: Table of Personnel and Work Effort. Percentages shown are in terms of full-time
equivalent (FTE); 100% is 1840 hours.

6.1 Project and Community Leads

Salary support is requested for PI Dharhas Pothina. He will oversee the coordination of the
proposed work between the 4 projects, supervise the Co-I’s and manage the engineering team
working across the projects.

Salary support is requested for Co-I Matt Haberland through a subaward with the California
Polytechnic State University (Cal Poly). He is a SciPy core developer and will deliver the
proposed new optimization features for SciPy.

26

Salary support is requested for Co-I Tyler Reddy. He is a core developer of both NumPy and
SciPy, and the SciPy release manager. He will oversee contributions to these projects, as
well as perform SciPy releases and extend support for new hardware platforms and Python
versions.

No salary support is requested for Andreas Mueller and Jeff Reback, Andreas Mueller has
been a scikit-learn core developer for over 10 years, while Jeff Reback has co-lead pandas for
the past 8 years. They will oversee the contributions to scikit-learn and pandas, respectively.
No time will be charged to this project as their salary is already covered by their primary
institutions.

6.2 Engineering Team

Salary support is requested for Thomas Fan. Thomas Fan has been a full-time scikit-learn
core developer for the past two years. He will develop the GPU and distributed array support
and the zero-copy pandas dataframe support.

Support is also requested to fund undergraduate research assistant(s) as part of the subaward
with Cal Poly. They will work on the SciPy project under the supervision of Matt Haberland.

Salary support is requested to bring in new developers to the project by hiring multiple software
engineers. Two engineers focusing on cross project: one working on continuous integration
(CI) and packaging infrastructure, and the other on performance (speed and memory usage)
improvements. A third engineer will contribute to both NumPy and pandas, with a focus on
string dtypes and user-defined functions. A fourth engineer will focus on GPU and distributed
array support in SciPy.

6.3 Other Direct Costs

No capital equipment, travel or any other direct costs are requested.

27

7 Facilities and Equipment

All code is hosted on GitHub and tested on freely available continuous integration services.
All software development can be executed on standard desktop machines, which are already
provided to all engineers by their employer. The server for executing benchmarks is the only
additional hardware needed - access to a suitable server for both the project team and other
core developers of the open source projects will be provided by Quansight on its existing
infrastructure.

28

